Moi! Luo tili ja ota osaa iloiseen keskusteluun. 🙂

Matematiikka

Pannu aina kuumana ja pöydissä tilaa. Keskustelua kamppailulajien ulkopuolelta huumoria unohtamatta. :)

Valvoja: Valvoja

Vastaa Viestiin
Avatar
antaeus
sääreenpotkija
Viestit tässä aiheessa: 1
Viestit: 81
Liittynyt: Syyskuu 2009
Tykännyt: 0
Tykätty: 0

Matematiikka

#1

Viesti antaeus »

Ylipotkija: Jaettu täältä.

Markuss kirjoitti: matikka
Matikka on mielenkiintoinen aihe- Mutta sitä opetetaan väärin Suomessa. Mistä osa-alueesta on kysymys???

cyt
kylkeenpotkija
Viestit tässä aiheessa: 1
Viestit: 3103
Liittynyt: Helmikuu 2008
Tykännyt: 0
Tykätty: 0

Matematiikka

#2

Viesti cyt »

Miksi opetetaan väärin?
Aikido(aikikai), Karate(shorinji-ryu renshinkan), Ju-jutsu (Hokutoryu)
Harjoituspäiväkirja[/linkki]
[113_linkki=http://potku.net/blogit/cyt/]Cytin blogi![/113_linkki]

Avatar
Totte
etupotkija
Viestit tässä aiheessa: 81
Viestit: 4384
Liittynyt: Toukokuu 2008
Paikkakunta: Helsinki
Tykännyt: 0
Tykätty: 0

Matematiikka

#3

Viesti Totte »

En tiedä mitä on tarkoitettu, mutta ainakin omasta mielestäni niin matikkaa opetetaan vasta yliopistossa. Peruskoulussa ja lukiossa opetetaan käyttämään matemaattisia työkaluja ja ratkaisemaan niiden avulla ongelmia.

Huomatkaa nyt että kirjoitukseni ei nyt ota kantaa siihen että opetetaanko matikkaa väärin koulussa, sitä pitääkin miettiä. Halusin vain tuoda esille että suurin osa ihmisistä tarkoittavat matemaattisia sovelluksia kun puhuvat matikasta.
"Jos minulla olisi kaikki valta, etenisin tältä pohjalta, mutta harmi kyllä, minulla ei ole lainkaan valtaa."
- Osmo Soininvaara

Avatar
SJR
munillepotkija
Viestit tässä aiheessa: 1
Viestit: 941
Liittynyt: Kesäkuu 2007
Paikkakunta: Helsinki
Tykännyt: 0
Tykätty: 0

Matematiikka

#4

Viesti SJR »

Mitä se "oikea" matikka sitten on, Totte? Opiskeletko matematiikkaa yliopistossa?

Avatar
Totte
etupotkija
Viestit tässä aiheessa: 81
Viestit: 4384
Liittynyt: Toukokuu 2008
Paikkakunta: Helsinki
Tykännyt: 0
Tykätty: 0

Matematiikka

#5

Viesti Totte »

SJR kirjoitti: Mitä se "oikea" matikka sitten on, Totte? Opiskeletko matematiikkaa yliopistossa?
Opiskelen. Oikea matikka lähtee perusoletuksista ja kaikki matemaattiset konstruktiot on sitten määritelty. Eli oikeastaan matikka on mielestäni kykyä määritellä konstruktioita niin että ne toimivat järkevästi ja erikoistapauksissa käyttäytyvät niin kuin niiden intuitiivisesti haluaisi käyttäytyvän. Sen jälkeen kun konstruktiot on luotu niin pyritään löytämään ominaisuuksia. Miten sitten todistaa että tietyllä asialla on joku ominaisuus? Miten määritellään joku olio niin että se käyttäytyy haluamallamme tavalla ja niin että sitä pystyy oikeasti käyttämään johonkin? Ei ole mitään yhtä tapaa. Tässä tulee vastaan matikan luova puoli.

Otetaan yksi esimerkki. Miten koulussa opetetaan derivoimaan funktio? Lyhyessä matikassa opetetaan miten eksponentti pitää pudottaa alas jne. Eli opetellaan vain se mekaaninen lasku. Pitkässä matikassa käytetään deriivatan määritelmää, joka määritellään raja-arvon kautta. Missä ei kuitenkaan käsitellä raja-arvon määritelmää. Mitäs me derivoidaan? No funktioita? Missään ei ole käsitelty jatkuvan funktion määritelmää.

Toisin sanoen. Matikka on sitä että sinulla on joku olio, esim funktio. Ensin tarvitaan määritelmä jotta me tiedetään mitä se funktio on. Sitten ruvetaan kategorisoimaan eri tyyppisiä funktioita (induktiivisia, surjektiivisia, jatkuvia jne.) joita sitten tutkitaan. Löydetään siis joidenkin funktioiden erityispiirteet ja katsotaan miten niitä voi käyttää hyväksi luodakseen uutta matematiikkaa. Matikassa ei koskaan voida käyttää mitään mitä ei ole määritelty. Miten voit muuten rakentaa sen pohjalle mitään? Tätä kuitenkin tehdään koulussa jatkuvasti.

Matikka: Jos on olio jolla on tällaiset ominaisuudet niin siitä voisi olla hyötyä. Se pitää tosin määritellä niin että se kuvaa yhden alkion tässä joukossa vain yhdelle alkiolle tuonne joukkoon, muuten se ei saa niitä ominaisuuksia mitä halutaan. Kutsutaan tätä nyt funktioksi niin ei tarvi toistella näitä määritelmiä kun puhutaan.

Koulumatikka: On olemassa (taivaasta annettu?) asia jonka nimi on funktio. Se kuvaa yhden pisteen aina yhdeksi pisteeksi. Funktion voi derivoida niin näkee miten paljon se muuttuu. Funktiota voi käyttää.... (ei mietitä (kunnolla) mitä on funktio, mikä on raja-arvo, mikä on jatkuvuus, mikä on derivointi, mutta opetellaan käyttämään niitä käytännössä).

Oli ehkä sekavaa tekstiä. Tuntuu että en oikein saa sitä perimmäistä ajatusta kirjoitettua esille.
"Jos minulla olisi kaikki valta, etenisin tältä pohjalta, mutta harmi kyllä, minulla ei ole lainkaan valtaa."
- Osmo Soininvaara

Avatar
MikaR
munillepotkija
Viestit tässä aiheessa: 2
Viestit: 980
Liittynyt: Toukokuu 2008
Paikkakunta: Pohjanmaa
Tykännyt: 0
Tykätty: 0

Matematiikka

#6

Viesti MikaR »

No itse sanoisin, että kun pelkästään derivaatan määritelmät vaativat jo kielen pitämistä tiukasti keskellä suuta, niin ehkäpä on vain hyvä, ettei pakkaa sekoiteta määritelmillä enempää kuin tarvitsee. Sillä vain näitä matematiikan työkaluja tarvitaan keskivertoelämässä.

Itse olen sitä mieltä, että matematiikan opetuksesta saisi jättää turhan teorian pois mielellään kokonaan. Minulla meni valehtelematta koko lukioaika ymmärtämättä murtolukulaskusääntöjä, mutta opin ne vartissa kun minulle vain kerrottiin ja näytettiin miten se tehdään ja jätettiin hienot termit pois.
Vasara riivisi

Avatar
Totte
etupotkija
Viestit tässä aiheessa: 81
Viestit: 4384
Liittynyt: Toukokuu 2008
Paikkakunta: Helsinki
Tykännyt: 0
Tykätty: 0

Matematiikka

#7

Viesti Totte »

Ennen kun lähdette väittelemään tästä niin huomatkaa nyt että en missän vaiheessa vaatinut että esim. jatkuvuuden määritelmää pitäisi ottaa mukaan koulun oppimäärään. Selitin vain pyynnöstä matikan ja koulumatikan eroja.

Kuitenkin kun opetetaan esim. laskusääntöjä tai vastaavaa niin pitää kyllä olla jonkin verran teoriaa mukana. Muuten käy helposti niin että osataan laskea joku jos se on _just_ sen näköinen kuin esimerkki oli. Jos taas osaisi yleisemmän laskusäännön niin sen osaisi helposti soveltaa koska kyseessä on sama tilanne joka on vain eri näköinen. Yksi esimerkki on kun pitää ratkaista tuntematon (olkoot vaikka X).

X + 3 = 5 menee hyvin

3X + 2 = 2X menee vielä

3/X + 5 = 2, APUA! Ei me olla opittu tota kun ei tota X:ää voi siirtää kun se on tos alhaalla, meneekö se vain sinne ylös? Eli onko se 3 + 5 = 2 + X, eiku tuleeks siitä = 2X *arvotaan vähän lisää*. "Emmä osaa..."

Jos taas on selitetty alusta lähtien mitä tehdään eikä selitetä "no siis käytännössä ny vain siirretään se X:ä" niin tuon ei pitäisi tuottaa ongelmia. Ehkä vähän huono esimerkki mutta menkööt ku en muuta keksiny.

Toinen voisi olla että kun vaihtaa X:n paikalle Y:n niin ihmiset ei osaa kun niitä on vain opetettu siirtämään X:iä tjsp. Eli kyllä se perusidea pitää saada selville. Monimutkaisia määritelmiä nyt ei tarvi peruskoulussa eikä ehkä lukiossakaan.


MUOKKAUS:
Sillä vain näitä matematiikan työkaluja tarvitaan keskivertoelämässä.
Lukiossa pitää kuitenkin huomioida että ainakin pitkässä matikassa pitäisi saada valmiudet jatko-opiskeluun ja oppia sitä matemaattista ajattelua. Eli siinä ei enää riitä että opitaan se mitä tarvitaan keskiveroelämässä.
"Jos minulla olisi kaikki valta, etenisin tältä pohjalta, mutta harmi kyllä, minulla ei ole lainkaan valtaa."
- Osmo Soininvaara

Kristian Hyvärinen
päähänpotkija
Viestit tässä aiheessa: 15
Viestit: 6486
Liittynyt: Kesäkuu 2006
Paikkakunta: Tampere
Tykännyt: 0
Tykätty: 0

Matematiikka

#8

Viesti Kristian Hyvärinen »

Totte kirjoitti: Pitkässä matikassa käytetään deriivatan määritelmää, joka määritellään raja-arvon kautta. Missä ei kuitenkaan käsitellä raja-arvon määritelmää. Mitäs me derivoidaan? No funktioita? Missään ei ole käsitelty jatkuvan funktion määritelmää.
Väärin ja väärin. Käymilläni lukiomatematiikan kursseilla on ainakin lyhyesti selvitetty tai johdettu käytössä olevien käsitteiden ja termistön määritelmät. Ellet sitten puhu jostakin minulle tuntemattomista tosi mutkikkaista määritelmistä.
If you're not perfect, there's something wrong with you.
- George Carlin

En allekirjoita mitään, mitä olen sanonut yli vuosi sitten, ellen toisin mainitse. Kohtelen sitä varhaisempia tuotoksia jonkun toisen kirjoittamina viesteinä ja ajatuksina.

Avatar
Nauses
kylkeenpotkija
Viestit tässä aiheessa: 1
Viestit: 1270
Liittynyt: Syyskuu 2007
Tykännyt: 0
Tykätty: 0

Matematiikka

#9

Viesti Nauses »

Jaksaisitko selittää miten 3/X + 5 = 2 lasketaan?

On muuten noloa kysyä kun pitkää matikkaa nyt suoritin lukiossa kuitenkin kai 9 kurssia ja neljä ensimmäistä niistä jopa ihan siedettävin numeroin(oisko ollut 8,7,7,7), loput sitten just ja just läpi ja motivaation puutteesta siirryin sitten lyhyeeseen ja siitäkin vaatimattomasti M. :?

Hahaha!, ei ihme että oli aika aivokatkosmainen olo, jotenkin unohdin että molemmat puolet voi toki kertoa X:llä, on se muisti kyllä hapero niiltä osilta joita ei aktiivisesti käytä. Siis ei luoja että mä voin olla osaamatta jotain tollasta :D
Erillisyyden harhan pauloissa

Avatar
sivarinlötkö
päähänpotkija
Viestit tässä aiheessa: 12
Viestit: 6844
Liittynyt: Kesäkuu 2005
Paikkakunta: Turku
Tykännyt: 0
Tykätty: 0

Matematiikka

#10

Viesti sivarinlötkö »

Alkuehto X != 0.
3/X + 5 = 2
3/X + 3 = 0
(3 + 3X)/X = 0

3 + 3X = 0, kun X = -1

Ei kannata kertoa tuntemattomalla jos ei ole pakko, koska muutoin joudutaan tarkastelemaan erikseen tapaukset joissa tuntematon on negatiivinen tai positiivinen (0 oli kielletty). Tän tason matikka on ihan kivaa... Itsellä kyllä jää ymmärrys hyvin alkeelliselle tasolle. Mjoo. Ensi periodissa alkavat diskreetti matematiikka ja tietotekninen algebra ovat aika perspanoa.
"Vesan pitäisi käyttää vähemmän sanontoja 'Miksi?' ja 'Mitä varten?'" - Ala-asteen ensimmäisen luokan opettaja

Avatar
Ikkyu
munillepotkija
Viestit tässä aiheessa: 2
Viestit: 722
Liittynyt: Huhtikuu 2008
Paikkakunta: Turku
Etulaji: Suiō-ryū iai kenpō
Sivulajit: Kendo
Takalajit: ZNKR iaido
Tykännyt: 0
Tykätty: 0

Matematiikka

#11

Viesti Ikkyu »

Kristian Hyvärinen kirjoitti: Väärin ja väärin. Käymilläni lukiomatematiikan kursseilla on ainakin lyhyesti selvitetty tai johdettu käytössä olevien käsitteiden ja termistön määritelmät. Ellet sitten puhu jostakin minulle tuntemattomista tosi mutkikkaista määritelmistä.
Eivät ne mutkikkaita ole, itseasiassa hyvin yksinkertaisia. Mennään vaan astetta syvemmälle ja lähdetään lähes nollasta liikkeelle (joskus ei siitäkään, muistan kun analyysi-kurssin alussa oli tehtävänä todistaa asioita reaalilukujen aksioomista ja piti aloittaa todistamalla että 0x = 0 koska sitä ei oltu erikseen annettu...). Jostain ne teidänkin käsittelemänne asiat on kuitenkin täytynyt keksiä ja johtaa.

Veikkaan että teillä ei käsitelty esimerkiksi epsilon-delta -todistusta funktion jatkuvuudesta puhuttaessa. Kyseiset perusteet vaativat mielestäni jonkinverran enemmän myös hahmotuskykyä kuin lukion valmiit kaavat.

Lasse Candé
etupotkija
Viestit tässä aiheessa: 100
Viestit: 17054
Liittynyt: Joulukuu 2007
Tykännyt: 1 kerran
Tykätty: 0

Matematiikka

#12

Viesti Lasse Candé »

Totte kirjoitti: En tiedä mitä on tarkoitettu, mutta ainakin omasta mielestäni niin matikkaa opetetaan vasta yliopistossa. Peruskoulussa ja lukiossa opetetaan käyttämään matemaattisia työkaluja ja ratkaisemaan niiden avulla ongelmia.
Kristian Hyvärinen kirjoitti:
Totte kirjoitti: Pitkässä matikassa käytetään deriivatan määritelmää, joka määritellään raja-arvon kautta. Missä ei kuitenkaan käsitellä raja-arvon määritelmää. Mitäs me derivoidaan? No funktioita? Missään ei ole käsitelty jatkuvan funktion määritelmää.
Väärin ja väärin. Käymilläni lukiomatematiikan kursseilla on ainakin lyhyesti selvitetty tai johdettu käytössä olevien käsitteiden ja termistön määritelmät. Ellet sitten puhu jostakin minulle tuntemattomista tosi mutkikkaista määritelmistä.
Alan itse olla Totten kanssa eri linjoilla nykyään. Kyllä matematiikan opetus alkaa jo siitä kun sormilla lasketaan (ja opetellaan luonnollisia lukuja). On mielenkiintoista havaita kuinka matematiikan historiallinen kehitys yleensä etenee samassa järjestyksessä kuin ihmisen oppimisjärjestys. Mielestäni asiassa pitää kunnioittaa kyseisen tieteen historiaa vähättelemättä ja toisaalta täytyy myös kunnioittaa tulevaisuutta, missä kenties nykyinen korkeatasoinen matematiikka näyttää naivilta?? Matematiikka ei ole vielä valmis ja opettelunsa toteutetaan suurimmaksi osaksi historiallista kehitystä mukaillen.

Lukion pitkässä matematiikassa todistetaan asiat yleensä kohderyhmälle. Lopultahan todistus tarkoittaa uskottavaksi tekemistä. Yliopistomatematiikassa kyseenalaistaminen menee pidemmälle, mutta ei tietenkään voi sanoa että loppuun asti. Eikä voi väittääkään että kursseissa olisi tarkoitus mennä loppuun asti. Iso osa todistuksista jätetään yleensä väliin. En näe tässä mitään eroa lukion tapaan, paitsi että matematiikka on selvästikin korkeampaa (ja syvempää) yliopistossa. Mikä onkin itsestäänselvää.

Lukiossa toki peilataan koko ajan matematiikkaa oikeeseen maailmaan mutta se on sikäli järkevää jo matematiikankin kannalta ettei sen ikäiset yleensä kykene kovin abstraktiin ajatteluun, jolloin abstraktit asiat täytyy opetella konkretiaa hyväksikäyttäen.


Eikun Kristian oikein ja oikein. Täytyy ymmärtää että Totte puhuu määrittelystä hieman syvemmällä tasolla kuin mitä lukiossa tehdään. Yhdessä lukiokirjassa olen nähnyt raja-arvon määritelmän siten kuten se yliopistossa hoidetaan. Se oli kirjassa ikäänkuin mausteena, kun asia ei kuulu lukio-opetukseen. Ja kyseessä on todellakin mutkikas juttu. :)

Mutta lukiomatsku todistaa lukiolaiselle suurimmaksi osaksi sen mitä tehdään. Itseasiassa yliopistotavara ei näitä lukiolaiselle yleensä todistaisikaan koska yliopistotason todistukset ovat yleensä joko niin vaikeita tai niin helppoja ettei yliopistomatematiikkaa ymmärtämätön hoksaa miten ne todistavat mitään mikä ei muutenkin ole aivan ilmeistä eikä edes tunnu kaipaavan todistamista.

Avatar
Totte
etupotkija
Viestit tässä aiheessa: 81
Viestit: 4384
Liittynyt: Toukokuu 2008
Paikkakunta: Helsinki
Tykännyt: 0
Tykätty: 0

Matematiikka

#13

Viesti Totte »

sivarinlötkö kirjoitti: Ei kannata kertoa tuntemattomalla jos ei ole pakko, koska muutoin joudutaan tarkastelemaan erikseen tapaukset joissa tuntematon on negatiivinen tai positiivinen
Johtuukohan siitä että on aamukahvit juomatta mut nyt minulle ei aukea?
"Jos minulla olisi kaikki valta, etenisin tältä pohjalta, mutta harmi kyllä, minulla ei ole lainkaan valtaa."
- Osmo Soininvaara

Avatar
Antti
etupotkija
Viestit tässä aiheessa: 5
Viestit: 1164
Liittynyt: Tammikuu 2005
Paikkakunta: Helsinki
Etulaji: Liikuntafilologia
Tykännyt: 0
Tykätty: 0

Matematiikka

#14

Viesti Antti »

Totte kirjoitti:
sivarinlötkö kirjoitti: Ei kannata kertoa tuntemattomalla jos ei ole pakko, koska muutoin joudutaan tarkastelemaan erikseen tapaukset joissa tuntematon on negatiivinen tai positiivinen
Johtuukohan siitä että on aamukahvit juomatta mut nyt minulle ei aukea?
Olisiko kyseessä esimerkki tarkoittamiesi opetustapojen mahdollisesti tuomista lieveilmiöistä?

Olen samoilla linjoilla Lasse Candén kanssa sikäli, että olisi esim. melko mieletöntä aloittaa ekaluokkalaisten laskennonopetus määrittelemällä luonnolliset luvut sekä yhteen- ja vähennyslasku sillä tavalla kuin ne oikeasti määritellään matemaattisen johdonmukaisesti. Abstrakti ajattelu tarvitsee konkreettisen maailman pohjakseen. Ensikieltäkään ei voi oppia pelkästään kuuntelemalla sitä ja matkimalla kuulemiansa ääniä.

Se, miten tämä ajatus pätee lukion pitkässä matematiikassa on tietysti ihan hyvä pohdinnan aihe. Toisaalta ylemmältä oppimisen tasolta on usein liiankin helppo katsoa alaspäin ja ihmetellä, miten "väärin" kaikki siellä opetetaan, vaikka olisi itsekin saavuttanut oppinsa juuri samaa tietä.

Itse asiassa sikäli kuin olen käsittänyt Toten (Totten?) esittämän ajatuksen oikein, voisi myös sanoa, että oppiessaan jäsentelemään maailmaa kielen avulla (siis oppiessaan äidinkielensä) ihminen oppii todellisen maailman "väärin". ;)
Antti Ijäs
Studia dimicatoria (blogi)
"Öyh, öyh, öyh, karjasi sika ja ryntäsi pimeässä Eenokin ylitse ovelle." (Tuulispää 28.9.1928.)

Avatar
TimoS
etupotkija
Viestit tässä aiheessa: 22
Viestit: 22766
Liittynyt: Tammikuu 2005
Paikkakunta: Hesa
Etulaji: Shorin ryu Seibukan karate
Sivulajit: Matayoshi kobudo
Takalajit: Matsuoi-ha Shorinji ryu Renshinkan karate
Tykännyt: 0
Tykätty: 0
Viesti:

Matematiikka

#15

Viesti TimoS »

Totte kirjoitti: Otetaan yksi esimerkki. Miten koulussa opetetaan derivoimaan funktio? Lyhyessä matikassa opetetaan miten eksponentti pitää pudottaa alas jne. Eli opetellaan vain se mekaaninen lasku. Pitkässä matikassa käytetään deriivatan määritelmää, joka määritellään raja-arvon kautta
On sitten mennyt opetus eteenpäin minun ajoistani, koska minun muistaakseni ei meille puhuttu mitään raja-arvoista derivoinnin yhteydessä. Tosin, niistä ajoista kun minä pitkää matikkaa lukiossa luin on vierähtänyt vuosi(kymmen) jos toinenkin :)
Timo Saksholm

Karate wa kunshi no bugei

Vastaa Viestiin

Paikallaolijat

Käyttäjiä lukemassa tätä aluetta: Ei potkulaisia ja 4 kurkkijaa